Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Bioeng Biotechnol ; 9: 690905, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1435979

RESUMEN

The rapid spread of COVID-19 and disruption of normal supply chains has resulted in severe shortages of personal protective equipment (PPE), particularly devices with few suppliers such as powered air-purifying respirators (PAPRs). A scarcity of information describing design and performance criteria for PAPRs represents a substantial barrier to mitigating shortages. We sought to apply open-source product development (OSPD) to PAPRs to enable alternative sources of supply and further innovation. We describe the design, prototyping, validation, and user testing of locally manufactured, modular, PAPR components, including filter cartridges and blower units, developed by the Greater Boston Pandemic Fabrication Team (PanFab). Two designs, one with a fully custom-made filter and blower unit housing, and the other with commercially available variants (the "Custom" and "Commercial" designs, respectively) were developed; the components in the Custom design are interchangeable with those in Commercial design, although the form factor differs. The engineering performance of the prototypes was measured and safety validated using National Institutes for Occupational Safety and Health (NIOSH)-equivalent tests on apparatus available under pandemic conditions at university laboratories. Feedback was obtained from four individuals; two clinicians working in ambulatory clinical care and two research technical staff for whom PAPR use is standard occupational PPE; these individuals were asked to compare PanFab prototypes to commercial PAPRs from the perspective of usability and suggest areas for improvement. Respondents rated the PanFab Custom PAPR a 4 to 5 on a 5 Likert-scale 1) as compared to current PPE options, 2) for the sense of security with use in a clinical setting, and 3) for comfort compared to standard, commercially available PAPRs. The three other versions of the designs (with a Commercial blower unit, filter, or both) performed favorably, with survey responses consisting of scores ranging from 3 to 5. Engineering testing and clinical feedback demonstrate that the PanFab designs represent favorable alternatives to traditional PAPRs in terms of user comfort, mobility, and sense of security. A nonrestrictive license promotes innovation in respiratory protection for current and future medical emergencies.

2.
BMC Infect Dis ; 21(1): 712, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1394421

RESUMEN

BACKGROUND: The COVID-19 pandemic has severely disrupted supply chains for many types of Personal Protective Equipment (PPE), particularly surgical N95 filtering facepiece respirators (FFRs; "masks"). As a consequence, an Emergency Use Authorization (EUA) from the FDA has allowed use of industrial N95 respirators and importation of N95-type masks manufactured to international standards; these include KN95 masks from China and FFP2 masks from the European Union. METHODS: We conducted a survey of masks in the inventory of major academic medical centers in Boston, MA to determine provenance and manufacturer or supplier. We then assembled a testing apparatus at a university laboratory and performed a modified test of filtration performance using KCl and ambient particulate matter on masks from hospital inventories; an accompanying website shows how to build and use the testing apparatus. RESULTS: Over 100 different makes and models of traditional and nontraditional filtering facepiece respirators (N95-type masks) were in the inventory of surveyed U.S. teaching hospitals as opposed to 2-5 models under normal circumstances. A substantial number of unfamiliar masks are from unknown manufacturers. Many are not correctly labelled and do not perform to accepted standards and a subset are obviously dangerous; many of these masks are likely to be counterfeit. Due to the absence of publicly available information on mask suppliers and inconsistent labeling of KN95 masks, it is difficult to distinguish between legitimate and counterfeit products. CONCLUSIONS: Many FFRs available for procurement during the COVID-19 pandemic do not provide levels of fit and filtration similar to those of N95 masks and are not acceptable for use in healthcare settings. Based on these results, and in consultation with occupational health officers, we make six recommendations to assist end users in acquiring legitimate products. Institutions should always assess masks from non-traditional supply chains by checking their markings and manufacturer information against data provided by NIOSH and the latest FDA EUA Appendix A. In the absence of verifiable information on the legitimacy of mask source, institutions should consider measuring mask fit and filtration directly. We also make suggestions for regulatory agencies regarding labeling and public disclosure aimed at increasing pandemic resilience.


Asunto(s)
COVID-19 , Exposición Profesional , Dispositivos de Protección Respiratoria , Humanos , Máscaras , Pandemias/prevención & control , SARS-CoV-2 , Ventiladores Mecánicos
3.
PLoS One ; 16(7): e0241734, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1325370

RESUMEN

Personal protective equipment (PPE) is crucially important to the safety of both patients and medical personnel, particularly in the event of an infectious pandemic. As the incidence of Coronavirus Disease 2019 (COVID-19) increases exponentially in the United States and many parts of the world, healthcare provider demand for these necessities is currently outpacing supply. In the midst of the current pandemic, there has been a concerted effort to identify viable ways to conserve PPE, including decontamination after use. In this study, we outline a procedure by which PPE may be decontaminated using ultraviolet (UV) radiation in biosafety cabinets (BSCs), a common element of many academic, public health, and hospital laboratories. According to the literature, effective decontamination of N95 respirator masks or surgical masks requires UV-C doses of greater than 1 Jcm-2, which was achieved after 4.3 hours per side when placing the N95 at the bottom of the BSCs tested in this study. We then demonstrated complete inactivation of the human coronavirus NL63 on N95 mask material after 15 minutes of UV-C exposure at 61 cm (232 µWcm-2). Our results provide support to healthcare organizations looking for methods to extend their reserves of PPE.


Asunto(s)
COVID-19/prevención & control , Contención de Riesgos Biológicos/métodos , Descontaminación/métodos , Pandemias , SARS-CoV-2/efectos de la radiación , Rayos Ultravioleta , COVID-19/transmisión , COVID-19/virología , Relación Dosis-Respuesta en la Radiación , Equipo Reutilizado , Personal de Salud/educación , Humanos , Laboratorios/organización & administración , Máscaras/virología , Respiradores N95/virología , Radiometría/estadística & datos numéricos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología
4.
Sci Rep ; 11(1): 2051, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1041626

RESUMEN

The COVID-19 pandemic has led to widespread shortages of personal protective equipment (PPE) for healthcare workers, including of N95 masks (filtering facepiece respirators; FFRs). These masks are intended for single use but their sterilization and subsequent reuse has the potential to substantially mitigate shortages. Here we investigate PPE sterilization using ionized hydrogen peroxide (iHP), generated by SteraMist equipment (TOMI; Frederick, MD), in a sealed environment chamber. The efficacy of sterilization by iHP was assessed using bacterial spores in biological indicator assemblies. After one or more iHP treatments, five models of N95 masks from three manufacturers were assessed for retention of function based on their ability to form an airtight seal (measured using a quantitative fit test) and filter aerosolized particles. Filtration testing was performed at a university lab and at a National Institute for Occupational Safety and Health (NIOSH) pre-certification laboratory. The data demonstrate that N95 masks sterilized using SteraMist iHP technology retain filtration efficiency up to ten cycles, the maximum number tested to date. A typical iHP environment chamber with a volume of ~ 80 m3 can treat ~ 7000 masks and other items (e.g. other PPE, iPADs), making this an effective approach for a busy medical center.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Respiradores N95/virología , Equipo de Protección Personal/virología , Esterilización/métodos , COVID-19/epidemiología , COVID-19/prevención & control , Equipo Reutilizado/estadística & datos numéricos , Humanos , Respiradores N95/provisión & distribución , Pandemias/prevención & control , Equipo de Protección Personal/provisión & distribución , Dispositivos de Protección Respiratoria , SARS-CoV-2/aislamiento & purificación , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA